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Abstract
The nonlinear propagation of amplitude-modulated electrostatic wavepackets
in an electron–positron–ion (e–p–i) plasma is considered, by employing a two-
fluid plasma model. Considering propagation parallel to the external magnetic
field, two distinct electrostatic modes are obtained, namely a quasi-thermal
acoustic-like lower mode and a Langmuir-like optic-type upper one. These
results equally apply in warm pair ion (e.g. fullerene) plasmas contaminated
by a small fraction of stationary ions (or dust), in agreement with experimental
observations and theoretical predictions in pair plasmas. Considering
small yet weakly nonlinear deviations from equilibrium, and adopting a
multiple-scales perturbation technique, the basic set of model equations is
reduced to a nonlinear Schrödinger (NLS) equation for the slowly varying
electric field perturbation amplitude. The analysis reveals that the lower
(acoustic) mode is mostly stable for large wavelengths, and may propagate in the
form of a dark-type envelope soliton (a void) modulating a carrier wavepacket,
while the upper linear mode is intrinsically unstable, and thus favours the
formation of bright-type envelope soliton (pulse) modulated wavepackets. The
stability (instability) range for the acoustic (Langmuir-like optic) mode shifts
to larger wavenumbers as the positive-to-negative ion temperature (density)
ratio increases. These results may be of relevance in astrophysical contexts,
where e–p–i plasmas are encountered, and may also serve as prediction of the
behaviour of doped (or dust-contaminated) fullerene plasmas, in the laboratory.
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1. Introduction

A great deal of research effort has recently been devoted to pair plasmas, i.e. large ensembles
of charged matter consisting of equal mass and opposite charge sign particles. In contrast to
ordinary (electron–ion, e–i) plasmas, where the large mass difference between particle species
imposes distinct frequency scales, the positively and negatively charged particles in pair
plasmas respond on the same scale. Nevertheless, the characteristics of waves cannot always
be deduced from what is obtained from e–i plasmas by simply letting particle masses to be
equal to one-another. For instance, it is known that parallel propagating linear electromagnetic
waves are not circularly but linearly polarized in pair plasmas, and Faraday rotation is absent
in this case [1]. Furthermore, ion-acoustic waves have no counterpart in electron–positron
(e–p) plasmas, where the electrostatic wave dispersion is of high frequency Langmuir type
[2, 3]. The properties of e–p plasmas have been investigated by several authors [4–7]. Recently,
the production of pair fullerene-ion plasmas in laboratory [8–10] has enabled experimental
studies of pair plasmas rid of intrinsic problems involved in electron–positron plasmas, namely
pair recombination processes and strong Landau damping.

In real, e.g. astrophysical contexts, e–p plasmas are also characterized by the presence of
positive ions, in addition to electrons and positrons. Electron–positron–ion (e–p–i) plasmas
appear in the early universe [11], active galactic nuclei [12] and in pulsar magnetospheres
[13]. Furthermore, e–p–i plasmas can be created in laboratory plasmas [14–17]. The standard
description of e–p–i plasmas adopted here considers fully ionized plasmas which consist of
two populations of different charge signs possessing equal masses and absolute charge values
(m1 = m2 = me, q1 = −q2 = +e), in addition to a population of positively charged ions
(m3 = M , q3 = +Z3e); see for instance [18–22]. On the other hand, one may anticipate the
injection of a small fraction of charged massive particles (an ion species, or dust particulates)
into fullerene pair-ion plasma [8–10] (doping) in order to produce three-component plasmas
which may accommodate new physical phenomena.

As far as electrostatic (ES) plasma modes [23, 24] are concerned, the occurrence
and properties of nonlinear ES waves in e–p–i plasmas have been investigated by several
authors. From a theoretical point of view, e–p–i plasmas are characterized by new,
modified properties and conditions for the existence of arbitrary amplitude localized ES
nonlinear excitations (which are typically modelled via the Sagdeev pseudopotential formalism
[25–28]). Furthermore, small amplitude-modulated wavepackets, generically related to
nonlinear Schrödinger theories [29], may be investigated via a (Krylov–Bogoliubov–
Mitropolsky) reductive perturbation technique [30–32]. The nonlinear modulation of such
ion-acoustic ES wavepackets was indeed studied by Salahuddin et al [33] in e–p–i plasmas,
by considering (low-frequency) ion-acoustic oscillations against a Maxwellian background of
thermalized electrons and positrons. Here, we aim at investigating the opposite edge of the ES
frequency range, namely high-frequency oscillations of (light mass) electrons and positrons
(or pair ions) against a neutralizing background of (heavier) ions which, given the frequency
range of interest, may be considered to be immobile. A similar study with respect to pure
(two-component) pair plasmas was carried out in [34, 35].

The present study is devoted to an investigation of the nonlinear amplitude modulation of
electrostatic modes propagating parallel to the external magnetic field, in e–p–i plasmas. The
model readily applies in pair-ion (e.g. fullerene) plasmas contaminated by a small fraction of
uniform and stationary (heavier) positive ions (or, say, dust particulates). The two electron
and positron (or pair ion) fluids are assumed to be warm and have a similar (yet not necessarily
equal) temperature, while the neutralizing background ions are stationary. Positive background
ions are implicitly considered here, although the formalism may also apply for negative ions
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(e.g. dust particles) as well. Relying on a two-fluid plasma description and adopting a slowly
varying amplitude hypothesis, we shall employ a multiple-scale technique [30–32] in order
to derive a nonlinear Schrödinger-(NLS) type evolution equation [29] for the amplitude of
weakly nonlinear electrostatic perturbations from equilibrium. The amplitude’s (modulational)
stability will then be studied, and the occurrence of modulated envelope excitations will be
discussed. Also, the influence of the value of positron-to-electron (or positive-to-negative
particle) density and temperature ratios on the modulational stability profile of ES waves will
be elucidated.

The layout of this paper is as follows. In section 2, the analytical model is introduced and
then employed, in section 3, as the basis of a perturbative analysis, by introducing appropriate
slow space and time evolution scales. An NLS-type equation is derived, governing the (slow)
amplitude evolution in time and space. The stability analysis and associated expressions
for envelope soliton solutions of the NLSE are outlined in section 4. Section 5 is devoted
to a discussion of the linear stability of ES waves by means of a numerical investigation
of relevant quantities (NLSE coefficients). Finally, our conclusions are summarized in
section 6.

2. The model equations

We shall consider a three-component plasma consisting of two inertial species, say 1 and 2,
which have equal masses and equal absolute charges of the opposite sign, i.e. q1 = −q2 = +Ze,
m1 = m2 = m and a third species, say 3, having a constant density n3, particle mass m3 �= m

and particle charge Z3e �= Ze. In specific, this picture applies to e–p–i plasmas, for Z = 1,
or in pair-ion (e.g. fullerene) [8–10], for Z = 1, ‘doped’ by the injection of a third charged
particle species of higher mass.

The two-fluid plasma-dynamical (moment) equations for our three-component plasma
include the two density (continuity) equations

∂nα

∂t
+ �∇ · (nα

�Uα) = 0, (1)

and the two momentum equations

∂ �Uα

∂t
+ ( �Uα · �∇) �Uα = − qα

mα

�∇φ −
�∇pα

mαnα

, (2)

where the subscript α denotes either species 1 (i.e. the positive ions, or positrons) for α = +,
or species 2 (i.e. the negative ions, or electrons) for α = −. The moment variables nα , �Uα

and pα denote the density, fluid velocity and pressure of species α, respectively. The Lorentz
force term is neglected, since wave propagation parallel to external magnetic field is assumed.
The electric field is provided by the electric potential ϕ, which obeys Poisson’s equation:

∇2ϕ = 4πeZ(n− − n+) − 4πZ3en3. (3)

The background ion density n3 is constant. The right-hand side on equation (3) is assumed to
cancel at equilibrium, due to the quasi-neutrality condition Z(n−,0 − n+,0) − Z3n3 = 0. The
system of equations (1) to (3) is closed by assuming an explicit density dependence of the
pressure in the form pα = Cn

γ
α , where γ is the ratio of specific heats. Combining this

assumption with the equation of state (at equilibrium) pα,0 = nα,0kBTα (where Tα denotes the
temperature of species α; kB is Bolztmann’s constant), the pressure term may be rearranged
as �∇pα/nα = γKBTαn

1−γ

α0 n
γ−2
α

�∇nα .
The model equations may be cast into a reduced (dimensionless) form by scaling the time

and space variables as t ′ ≡ ωp,−t and x ′ ≡ x/λD,−, respectively. We have defined the plasma
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frequency ωp,α = (
4πn0q

2
α

/
m

)1/2
(see that ωp,− = ωp,+ = ωp if n+,0 = n−,0, only) and the

Debye length λD,α = (
KBTα

/
m ω2

p,α

)1/2
(for α = +,−). The density, velocity and electric

potential state variables are scaled as n′
α = nα/n−,0, u′

α = uα/cs and ϕ′ = ϕ/ϕ0, respectively,
where we have defined the characteristic (sound) speed cs = (kBT−/m)1/2 (for negative
ions) and the characteristic potential scale ϕ0 = KBT−/Ze (the primes will be dropped for
simplicity). Combining these definitions and considering a one-dimensional geometry (along
x), the model equations reduce to

∂nα

∂t
+ �∇ · (nα

�Uα) = 0, (4)

∂ �Uα

∂t
+ ( �Uα · �∇) �Uα = −α �∇φ − γ Tα

T−
nγ−2

α
�∇nα, (5)

and

∇2ϕ = (n− − n+) − Z3

Z
n3, (6)

where α = +,− is used as a subscript (denoting species) and as a factor (= ±1), throughout
this text. In equilibrium, the neutrality condition 1 − β − δ(Z3/Z) = 0 holds. Here we have
defined the parameters β = n+0/n−0 and δ = n3/n−0. See that positively charged background
ions will be implicitly considered here (Z3 > 0, i.e. δ > 0), although the formalism readily
applies for negatively charged massive particles (e.g. dust), for Z3 < 0, i.e. δ > 0. We note
that β < 1 for δ �= 0 (in the former case, considered in the following; the opposite holds in
the negative-ion case); the case δ = 0 refers to ‘pure’ pair plasma. The choice γ = 3 is made
in the following, accounting for one-dimensional wave propagation.

3. Methodology—derivation of an amplitude evolution equation

3.1. The perturbative analysis

In order to obtain an explicit evolution equation describing the propagation of modulated
EA envelopes, from the model equations (4)–(6), we shall employ the standard reductive
perturbation (multiple scales) technique [30–32]. The independent variables x and t are
stretched as ξ = ε(x − λt) and τ = ε2t , where ε is a small (real) parameter; here, λ is a free
(real) parameter, which is to be later determined as the wave’s group velocity by compatibility
requirements. The dependent variables are expanded as

n− = 1 +
∞∑

n=1

+∞∑
l=−∞

εnn
(n)
−,l(ξ, τ ) eil(kx−ωt), n+ = β +

∞∑
n=1

∞∑
l=−∞

εnn
(n)
+,l (ξ, τ ) eil(kx−ωt)

U+ =
∞∑

n=1

∞∑
l=−∞

εnU
(n)
+,l (ξ, τ ) eil(kx−ωt), U− =

∞∑
n=1

∞∑
l=−∞

εnU
(n)
−,l (ξ, τ ) eil(kx−ωt) (7)

φ =
∞∑

n=1

∞∑
l=−∞

εnφ
(n)
l (ξ, τ ) eil(kx−ωt)

where ω and k are the real parameters denoting the wave’s frequency and wavenumber; the
reality condition A

(n)
−l = A

(n)∗
l is met by all state variables; the star superscript denotes the

complex conjugate of the (complex) harmonic amplitudes.
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Substituting the expansion ansatz (7) and the stretched variables ξ , τ into equations (4)–
(6), and then isolating distinct orders in ε, we obtain the nth order reduced density equation

−λ
∂n

(n−1)
α,l

∂ξ
+

∂n
(n−2)
α,l

∂τ
− ilωn

(n)
α,l + ilkκαU

(n)
α,l + κα

∂U
(n−1)
α,l

∂ξ

+
∞∑

n′=1

∞∑
l′=−∞

[
ilkn

(n′)
α,l′ U

(n−n′)
α,l−l′ +

∂

∂ξ

(
n

(n′)
αl′ U

(n−n′−1)
α,l−l′

)] = 0, (8)

density equation

∂U
(n−2)
α,l

∂τ
− λ

∂U
(n−1)
α,l

∂ξ
− ilωn

(n)
α,l +

∞∑
n′=1

∞∑
l′=−∞

[
il′kU

(n−n′)
α,l−l′ U

(n)
−,l + U

(n−n′−1)
α,l−l′

∂U
(n′)
α,l′

∂ξ

]

= −α
∂ϕ

(n−1)
l

∂ξ
− ilαkϕ

(n)
l − 3ilkκαn

(n)
α,l − 3κασα

∂n
(n−1)
α,l

∂ξ

− 3
∞∑

n′=1

∞∑
l′=−∞

[
il′n(n−n′)

α,l−l′ kn
(n′)
−,l′ + n

(n−n′−1)
α,l−l′

∂n
(n′)
α,l′

∂ξ

]
, (9)

and Poisson’s equation

∂2ϕ
(n−2)
l

∂ξ 2
− l2k2ϕ

(n)
l + 2ilk

∂ϕ
(n−1)
l

∂ξ
= n

(n)
−,l − n

(n)
+,l (10)

where σα = Tα/T−, i.e. σ− = 1 and σ+ = σ = T+/T−; and κα = 1 for α = − and κα = β for
α = + ; recall that β = n+,0/n−,0.

From the first-order (n = 1) equations, we obtain

−ilωn
(1)
−,l + ilkU

(1)
−,l = 0, −ilωn

(1)
+,l + ilkβU

(1)
+,l = 0

−ilωU
(1)
−,l = ilkϕ

(1)
l − 3ilkn

(1)
−,l , −ilωU

(1)
+,l = −ilkϕ

(1)
1 − 3ilσkβn

(1)
+,1, (11)

−l2k2φ
(1)
l = n

(1)
−,l − n

(1)
+,l ,

from which the following dispersion relation is deduced, for l = 1

β

ω2 − 3σk2β2
+

1

ω2 − 3k2
= 1, (12)

as a compatibility requirement. Two real solutions are thus obtained for the frequency square
ω2, defined by

ω2
1 = 1 + β

2
+

3

2
(1 + σβ2)k2 − 1

2

√
9k4(1 − σβ)2 + 6(β − 1)(σβ2 − 1)k2 + (1 + β)2 (13a)

and

ω2
2 = 1 + β

2
+

3

2
(1 + σβ2)k2 +

1

2

√
9k4(1 − σβ)2 + 6(β − 1)(σβ2 − 1)k2 + (1 + β)2. (13b)

See that, for all values of β and σ , the lower mode satisfies ω1 → 0 as k → 0, while the
upper mode goes to a finite cutoff frequency ω1 → √

1 + β, as observed in the experiment by
Oohara and Hatakeyama [10].

For small k, these branches behave as

ω2
1 ≈ 3β(1 + σβ)k2/(1 + β), (14a)

and

ω2
2 ≈ 1 + β + 3(1 + σβ3)k2/(1 + β), (14b)
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(a) (b)

ω ω

k k

Figure 1. The two dispersion curves defined by equation (13) are depicted, as a frequency ω/ωp

variation versus the reduced wavenumber kλD .

i.e. recovering dimensions,

ω2
1 ≈ 3β(1 + σβ)csk

2/(1 + β)

and

ω2
2 ≈ (1 + β)ω2

p + 3(1 + σβ3)c2
s k

2
/
(1 + β)

(setting β = σ = 1, one recovers the pure pair plasma limit formulae which is found
in the literature). See that the cutoff frequency ω1 → ωp

√
1 + β is affected by the pair-

species’ densities, but not by their temperatures; cf figures 1(a) and (b). Two characteristic
velocities, c0L = cs

√
3β(1 + σβ)/(1 + β) and c0U = cs

√
3(1 + σβ3)/(1 + β) are thus defined.

Electrostatic modes in e–p–i plasmas therefore include an acoustic dispersion, ω1 ≈ ±coLk,
and a Langmuir-like optical behaviour ω2 ≈ ±

√
(1 + β)ω2

p + c2
0Uk2, for small k. For clarity,

ω1 = ωL and ω2 = ωU will henceforth be referred to as the lower and the upper curve,
respectively. Note, for rigour, that the lower branch has been argued to be subject to strong
damping, in electron–positron plasmas, due to the phase velocity ω1/k being close to the
sound velocity [36]. However, this may not necessarily be true in e–p–i , thanks to the
extra ion component and/or the pair-ion species temperature ratio, which affects the wave
front phase velocity. The dispersion laws presented here are in full agreement with (and, in
fact, generalize) known experimental [8, 9] and theoretical [3] results for pair plasmas. It
may be noted, for the sake of rigor, that the lower dispersion relation cannot exist for an
identical positive and negative ion population plasma preparation to see this, set β = σ = 1 in
equation (12), a fact which seems to point towards an asymmetry of the pair-ion constituents
in the experiment described in [8, 9] (where the acoustic mode was indeed observed).

The two dispersion curves obtained above are depicted in figure 1. We note on the plots
the dependence of the dispersion relation on the parameters involved, namely the positive-
to-negative ion (or positron-to-electron) density and temperature ratios β and σ . The wave
frequency for a fixed wavenumber clearly increases with higher β, i.e. for a lower fixed ion
concentration; in other words, the addition of a stationary positive ion component results in
lower frequency values and lower phase speeds, for small k; the phase velocity (slope) is also
affected—see in figure 1(a). The opposite effect should be expected if the stationary ions
were negatively charged. On the other hand, higher values of the temperature σ (e.g. hotter
positrons, in e–p–i plasma) result in lower frequency values—see in figure 1(b). All of these
effects are more intense in the lower (acoustic) mode, and only slightly observed in the upper



Electrostatic mode envelope excitations in e–p–i plasmas 13823

mode (hence the extreme parameter values considered in figure 1, to depict the change in the
curve).

The first-order first harmonic amplitudes are now determined as

n
(1)
−,1 = k2

−ω2 + 3k2
ϕ

(1)
1 , n

(1)
+,1 = k2β

ω2 − 3σk2β2
ϕ

(1)
1 , kβU

(1)
+,1 = ωn

(1)
+,1,

U
(1)
−,l = kω

−ω2 + 3k2
ϕ

(1)
1 , U

(1)
+,1 = kω

ω2 − 3σk2β2
ϕ

(1)
1 .

(15)

The frequency in these (and all forthcoming) expressions refers to either the lower or the
upper branch. Note that these expressions would be meaningless if σ = 1 and β = 1 were
simultaneously satisfied the denominators would then vanish; cf (13a) and (13b)); this is not
the case here, by assumption.

For the second-order (n = 2) equations with l = 1 (first harmonics), we deduce the
following compatibility condition:

λ = ω

k
− 1

kω
[

1
(ω2−3k2)2 + β

(ω2−3σk2β2)2

] . (16)

It is easy to show that λ = vg(k) = ∂ω/∂k. The real parameter λ therefore denotes the group
velocity.

3.2. The nonlinear Schrödinger equation

Proceeding to n = 2, l = 2 in combination with n = 3, l = 0, 1 in equations (8)–(10), we
obtain a compatibility condition in the form of the nonlinear Schrödinger equation:

i
∂ϕ

∂τ
+ P

∂2ϕ

∂ξ 2
+ Q |ϕ|2 ϕ = 0, (17)

which describes the slow evolution of the first-order amplitude of the plasma potential
perturbation ϕ ≡ ϕ

(1)
1 . The dispersion coefficient P is related to the dispersion curve as

P = ∂2ω/2∂k2. Its exact form reads

P = (ω2 − kλω)2(ω − kω)

2ω2k2

[
ω2 + 3k2

(ω2 − 3k2)3
+

β(ω2 + 3σk2β2)

(ω2 − 3σk2β2)3

]

+
3(ω2 − kλω)2

ω

[
1

(ω2 − 3k2)3
+

σβ3

(ω2 − 3σk2β2)3

]
− ω2 − kλω

2ωk2

− (ω2 − kλω)2λ

k

[
1

(ω2 − 3k2)3
+

β

(ω2 − 3σk2β2)3

]
. (18)

The nonlinearity coefficient Q, which is due to the carrier wave self-interaction, is given
by

Q = −k3(2ω + kλ)(ω2 − kλω)

2λω

[
(ω2 + 3k2)

(ω2 − 3k2)4
+

β(ω2 + 3σk2β2)

(ω2 − 3σk2β2)4

]

− 3k4(ω2 − kλω)

4ω

[
(ω2 + 3k2)(ω2 + k2)

(ω2 − 3k2)5
+

β(ω2 + 3σk2β2)(ω2 + σk2β2)

(ω2 − 3σk2β2)5

]

− 3k4(ω2 − kλω)

4ω

[
(ω2 + k2)[ω2 + k2 + 6k2(ω2 − 3k2)]

(ω2 − 3k2)6

+
β2(ω2 + σk2β2)[ω2 + σk2β2 + 6σk2β(ω2 − 3σk2β2)]

(ω2 − 3σk2β2)6

]
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+
3βk4(ω2 + k2)(ω2 + σk2β2)(ω2 − kλω)

2ω(ω2 − 3k2)3(ω2 − 3σk2β2)3
+

(2kλω + ω2 + 3k2)(ω2 − kλω)

2ω[λ2 − 3σβ2 + (λ2 − 3)β]

×
[
2ωk3(λ2 − 3σβ2 − 3β)− k2βλ(ω2 + 3k2)

λ(ω2 − 3k2)4
− 4ωk3λβ

(ω2 − 3k2)2(ω2 − 3σk2β2)2

− k2β(2ω2 + 3k2 + 3σk2β2)

(ω2 − 3k2)2(ω2 − 3σk2β2)2

+
2ωk3β2(λ2 − 3σβ − 3) − k2βλ(ω2 + 3σk2β2)

λ(ω2 − 3σk2β2)4

]
. (19)

It may be interesting to trace the asymptotic behaviour of these coefficients for small k, i.e. for
a large wavelength, compared to the Debye radius. At first we consider low mode. PL behaves
as PL ≈ −cP,Lk for small k, while QL goes to infinity as QL ≈ cQ,L/k (the expressions for
the quantities cP,L and cQ,L are given in the appendix). The product PQ is therefore negative
(prescribing modulational stability, as we shall see) and independent of k, for small k (i.e. in
the long-wavelength limit), while P/Q ∝ −k2 in the same limit. For the upper mode, PU

goes to a constant as PU ∼ 3(σ 3 + 1)/(1 + β)3/2 > 0, while QU behaves as QU ∼ cQ,Uk2 > 0
(the expression for cQ,U is given in the appendix). The product PQ is therefore positive
(favouring modulational instability, as we will see below) and tends to zero, for small k, while
P/Q ∼ k−2 > 0 in the same limit.

4. Modulational instability and envelope excitations

4.1. Modulational stability analysis

The stability analysis of the NLS equation (17) consists in linearizing around the
monochromatic wave solution ψ = ψ̂ eiQ|ψ̂ |2τ , i.e. by setting ψ̂ = ψ̂0 + εψ̂1, and then taking
the perturbation ψ̂1 to be of the form ψ̂1 = ψ̂1,0 ei(k̂ξ−ω̂τ ) (the perturbation wavenumber k̂

and frequency ω̂ should be distinguished from the carrier wave quantities k and ω). One
thus obtains the dispersion relation ω̂2 = P k̂2(P k̂2 − 2Q|ψ̂0|2). In order for the wave to
be stable, the product PQ must be negative. Otherwise, for positive PQ, instability sets
in for perturbation wavenumber values below a critical value k̂cr = √

2Q/P |ψ̂0|, i.e. for
wavelength values above the threshold λcr = 2π/k̂cr . The maximum instability growth rate
σ = |Im ω̂(k̂)|, i.e. σmax = |Im ω̂|k̂=k̂cr /

√
2 = |Q||ψ̂0|2, is achieved for k̂ = k̂cr/

√
2.

We draw the conclusion that the instability condition depends only on the sign of the
product PQ, which may be studied numerically, relying on the exact expressions derived
above.

4.2. Envelope soliton solutions of the NLSE

The localized solutions of the NLSE (17) describe (arbitrary amplitude) nonlinear excitations,
in the form of bright and dark (black/grey) envelope solitons. Exact expressions for these
envelope structures can be found by substituting with ϕ = √

ρ exp(iθ) into equation (17), and
then separating real and imaginary parts. The final formulae are exposed e.g. in [32, 37], and
will therefore only briefly be summarized in the following.

For PQ > 0 we find the bright envelope soliton:

ρ = ρ0 sech2

(
ξ − uτ

l

)
, θ = 1

2P

[
uξ −

(
� +

1

2
u2

)
τ

]
which represents a localized pulse travelling at a speed u and oscillating at a frequency
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� (at rest). The pulse width l depends on the constant maximum amplitude square ρ0 as
l = √

2P/Qρ0. We note that the maximum amplitude
√

ρ0 is inversely proportional to the
spatial extension l; this is in fact also true in the dark (i.e. black/grey) envelope soliton case
(see below).

For PQ < 0 we have the black envelope soliton

ρ = ρ1

[
1 − sech2

(
ξ − uτ

l′

)]
= ρ1 tanh2

(
ξ − uτ

l′

)
,

θ = 1

2P

[
uξ −

(
1

2
u2 − 2PQρ2

1

)
τ

]
,

representing a localized region of negative wave density travelling speed u. The pulse width
depends on the maximum amplitude square ρ1 via l′ = √|2P/Qρ1|.

Finally, for PQ < 0, one also obtains the grey envelope soliton excitation

ρ = ρ2

[
1 − a2 sech2

(
ξ − uτ

l′′

)]
,

which also represents a localized region of negative wave density, θ10 is a constant phase, s

denotes the product s = sign P × sign(u−V0). In comparison to the black soliton above, note
that apart from the maximum amplitude

√
ρ2, which is now finite everywhere, the pulse width

of this grey-type excitation: l′′ = (1/a)
√

2|P/Qρ2|, now also depends on the dimensionless
parameter a, which is given by a2 = 1+(u−V0)

2/(2PQρ2) � 1 (for PQ < 0), an independent
parameter representing the modulation depth (0 < a � 1). V0 is an independent real constant
which satisfies the condition: V0 −

√
2|PQ|ρ2

2 � u � V0 +
√

2|PQ|ρ22 ; for V0 = u, we have
a = 1 and thus recover the black soliton presented in the previous paragraph.

5. Numerical analysis

Summarizing the previous section, we have seen that the sign of the coefficient product
PQ determines the stability profile of ES waves and the type of envelope excitations
(negative/positive for stability/instability and bright/dark type envelope solitons), while the
ratio P/Q determines the spatial extension of the localized envelope structures for a given
maximum amplitude (and vice versa), in an inverse-proportional manner. We may now
investigate the numerical value of these quantities in terms of the relevant physical parameters,
namely the positron-to-electron (or positive-to-negative ion) density and temperature ratio(s),
β = n+,0/n−,0 and σ+ = σ = T+/T−, respectively.

The results of the calculations for fixed values of σ and different values of β for the lower
mode (acoustic branch) are shown in figures 2(a) and (b), for small k (large wavelengths), and
in figures 3(a) and (b) for higher k. We may nevertheless admit, for rigor, that figures 3(a)
and (b) are invalidated by Landau damping, which is expected to be dominant for large k
(where the ES wave phase velocity is comparable to the ion thermal velocity), and are thus
only provided for indicative purposes. We find out that both dark (grey or black, for PQ < 0) and
bright (for PQ > 0) excitations may occur. The former dominate the large wavelength (small
k) region, while the latter exist in a bounded range of values for shorter wavelengths in which
PQ > 0 (namely, from a zero-nonlinearity point k = kZNP > 0, where Q = 0 or P/Q → ±∞,
up to a zero-dispersion point, k = kZDP, say ZDP, where P = 0). Upon careful inspection of
figure 2(a) and figure 3(a), one observes that the range of positive PQ values (hence instability)
increases and shifts to higher values of k as β increases, for a fixed σ . As figure 2(b) shows,
the width of grey and dark excitations increases as k increases until k = kZNP, while that of
bright excitations decreases as k increases from k = kZNP up to k = kZDP. For a fixed value of
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(a) (b)

(c) (d )

Figure 2. The NLSE coefficient product PQ ((a) and (c)) and ratio P/Q ((b) and (d )) corresponding
to the lower dispersion branch ω1 are depicted against the reduced wavenumber kλD (in abscissa
everywhere). Here ((a) and (b)) σ = 1, and different values of β are considered; ((c) and
(d )) β = 0.95, and σ varies.

k, the width of dark (bright) excitations is shown to decrease (increase), for a given maximum
amplitude, as the density ratio increases. Admittedly, as stated above, high values of k are
rather excluded physically, due to Landau damping (which is inevitably omitted in a fluid
plasma description), so we need not pursue this analysis any further. Also, we note that the
NLSE-based analysis breaks down near the ZDP, where higher-order nonlinearity takes over
(this is a well-known phenomenon in nonlinear optics).

Considering a fixed value of β for different values of σ , for the lower mode, we
have obtained figures 2(c) and (d ) and figure 3(c) and (d ). The qualitative aspects of the
above analysis are also valid in this case. Thus, increasing the density of positrons (or positive
ions) with respect to their electron (or negative ion) counterpart results in an increase in the
wavenumber instability threshold, and therefore slightly favours stability. For a fixed value of
k, the width of dark (bright) excitations is shown to decrease (increase), for a given maximum
amplitude, as the temperature ratio increases.

Let us consider the upper mode (optical dispersion branch). The results of the calculation
for a fixed temperature ratio σ and different values of the density ratio β (or, respectively,
fixed β and varying σ ) for this mode are shown in figures 4(a) and (b) (or, respectively,
figures 4(c) and (d )). Both dark (for PQ < 0) and bright (for PQ > 0) excitations can exist
for this mode. Note, however, that the qualitative profile is reversed, with respect to the lower
mode: here, bright excitations and modulational instability occur for small k, in fact from
zero up to a threshold k = kcr (see that Q → ±∞ as k → kcr ), while dark excitations (and
modulational stability of the envelope) occur for larger k, after k = kcr . As the width of bright
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(a) (b)

(c) (d )

Figure 3. The same as in figure 2, for higher wavenumber k values.

excitations becomes narrower as k increases from zero up to k = kcr , where it reaches zero.
Beyond k = kcr , only stable envelopes may propagate, in the form of dark-type envelope
solitons; the corresponding localized envelope width increases up to a maximum value, and
then decreases as k increases (still, these low wavelength results are to be interpreted with
precaution). Upon careful inspection of figures 3(a) and (c), one observes that kcr shifts to
larger values as either σ or β increases.

Summarizing, we conclude that the lower (acoustic) mode is generally stable, for realistic
large wavelength situations (see figures 2(a) and (d )) and may propagate in the form of a dark-
type envelope soliton (i.e. a potential dip, a void). On the other hand, the upper (Langmuir-like)
mode is modulationally unstable (see figures 4(a) and (d )), and may favour the formation of
bright-type envelope soliton (pulse) modulated wavepackets at low wavenumbers. We remark
that, once the potential perturbation is determined by the NLSE (17), the density and velocity
variations are given by expressions (15); it may be checked that the two fluids (negative and
positive ions) are subject to a perturbation of opposite sign to one-another: an increase in the
number density (or the velocity) of one entails a depletion (or a slow-down) in the other, as
may be seen in equation (15). Finally, comparing to the ‘pure’ e–p (or pair–ion) plasma, which
was presented in [34, 35], we note that the qualitative profile depicted above remains similar
(despite an analytical complication discussed in [35]). It should be pointed out, however,
that all relevant wavenumber thresholds are increased in our case here; this implies that the
presence of ions in e–p plasma (respectively: charged defects, say, in pair-ion plasma) results
in a significant increase of the wavenumber range where the lower (acoustic) mode is stable
(favouring dark solitons, i.e. holes/voids) and/or where the upper (Langmuir-like) mode is
unstable (favouring bright solitons, i.e. pulses).
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(a) (b)

(c) (d)

Figure 4. The NLSE coefficient product PQ ((a) and (c)) and the ratio P/Q ((b) and (d ))
corresponding to the lower dispersion branch ω2 are depicted against the reduced wavenumber
kλD (in abscissa everywhere). Here ((a) and (b)) σ = 1, and different values of β are considered;
((c) and (d )) β = 0.95, and σ varies.

6. Conclusions

In this paper, we have investigated the nonlinear propagation of electrostatic wavepackets in
e–p–i plasmas, by employing a two-fluid plasma model. The results equally apply in the case
of a pair-ion plasma, in the presence of a small fraction of uniform and stationary charged
particles (e.g. dust). Electrostatic mode propagation parallel to the external magnetic field
was considered. The temperature ratio between the two species has been left arbitrary in
the analysis, although a natural choice of unity was implicitly focused upon. Two distinct
electrostatic modes were obtained, namely a quasi-thermal lower mode and a Langmuir-
like optic-type upper one which is the case for pure pair plasmas, in agreement with previous
experimental observations confirmed by theoretical studies of equal-temperature pair plasmas.
Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple
scale technique, the basic set of model equations was reduced to a nonlinear Schrödinger
equation for the slowly varying electric field perturbation amplitude.

The analysis revealed that the stability range of lower (acoustic) mode increases as the
positive ion (or positron) to negative ion (or electron) ion density ratio β increases. The
lower mode may propagate in the form of a dark-type envelope soliton (i.e. a potential dip,
or a void) which modulates a carrier wave. On the other hand, the upper mode is mostly
modulationally unstable, and may yet favour the formation of bright-type envelope soliton
(pulse) modulated wavepackets at small wavenumbers. As mentioned above, these results
depend on the temperature ratio, as one may see in figures 2–4. In specific, one may anticipate
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that a local coexistence of positive ions (or positrons) with a colder, say, population of
negative ions (or electrons), namely σ < 1 (σ > 1), may critically affect the stability profile
of electrostatic modes, for instance by stabilizing the lower mode, or by destabilizing the upper
mode.

It should be added, for rigour, that our results on the lower mode are somewhat invalidated
by Landau damping, which will dominate if the pair-ion temperatures are equal. However, we
speculate that allowing for T+ �= T−, and hence modifying the group velocity (see the slope in
figure 1(b)) may decrease Landau damping and allow ES oscillations to survive. Preliminary
theoretical calculations in this direction are currently carried out and should be reported soon.

These results are relevant to recent observations of electrostatic waves in pair-ion
(fullerene) plasmas. In particular, one may anticipate doping fullerene plasmas with charged
massive defects (or dust particles), in order to tune the characteristic features of plasma
modes. This analysis may also be relevant to modulated electron–positron–ion plasma radio
emission in pulsar magnetospheres. Our predictions may be investigated, and will hopefully
be confirmed, by appropriately designed experiments.
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Appendix

cP,L =
9
√

3(σβ2 − 1)2
√

β(1+σβ)

1+β

2[1 + (2 + σ)β + (1 + 2σ)β2 + σβ3]

CQ,L =
(

(9
√

3 σ 2β9 + 18
√

3 σ 2β8 + 24
√

3 β8σ + 54
√

3 β7σ + 26
√

3 σ 2β7 + 16
√

3 β7)

+ 40
√

3 β6 + 84
√

3 β6σ + 32
√

3 σ 2β6 + 65
√

3 β5 + 21
√

3 σ 2β5 + 116
√

3 β5σ

+ 14
√

3 σ 2β4 + 104
√

3 σβ4 + 90
√

3 β4 + 82
√

3 β3 + 8
√

3 σ 2β3 + 78
√

3 σβ3

+ 56
√

3 β2 + 44
√

3 σβ2 + 8
√

3 σβ + 29
√

3 β + 6
√

3)

√
β(1 + σβ)

σ + β

)/

(−1296σ 4β10 + 1944σ 3β8 − 1296σ 2β6 + 324σ 5β12 − 1296σ 3β9

+ 1944σ 2β7 − 1296β5σ + 324σ 4β11 + 324σβ4 − 324β3)

CQ.U = 1

3(1 + β)(29/2)σβ + 3(1 + β)(29/2)

× (2β13 + 26β12 + 156β11 + 572β10 + 1430β9 + 2574β8

+ 3432β7 + 3432β6 + 2574β5 + 1430β4 + 572β3 + 156β2 + 26β + 2).
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